A Sobolev-Type Inequality for the Curl Operator and Ground States for the Curl–Curl Equation with Critical Sobolev Exponent
نویسندگان
چکیده
Let $\Omega\subset \mathbb{R}^3$ be a Lipschitz domain and let $S_\mathrm{curl}(\Omega)$ the largest constant such that $$ \int_{\mathbb{R}^3}|\nabla\times u|^2\, dx\geq S_{\mathrm{curl}}(\Omega) \inf_{\substack{w\in W_0^6(\mathrm{curl};\mathbb{R}^3)\\ \nabla\times w=0}}\Big(\int_{\mathbb{R}^3}|u+w|^6\,dx\Big)^{\frac13} for any $u$ in $W_0^6(\mathrm{curl};\Omega)\subset W_0^6(\mathrm{curl};\mathbb{R}^3)$ where $W_0^6(\mathrm{curl};\Omega)$ is closure of $\mathcal{C}_0^{\infty}(\Omega,\mathbb{R}^3)$ $\{u\in L^6(\Omega,\mathbb{R}^3): u\in L^2(\Omega,\mathbb{R}^3)\}$ with respect to norm $(|u|_6^2+|\nabla\times u|_2^2)^{1/2}$. We show $S_{\mathrm{curl}}(\Omega)$ strictly larger than classical Sobolev $S$ $\mathbb{R}^3$. Moreover, independent $\Omega$ attained by ground state solution curl-curl problem (\nabla\times u) = |u|^4u if $\Omega=\mathbb{R}^3$. With aid those results, we also investigate states Brezis-Nirenberg-type operator bounded $$\nabla\times +\lambda u |u|^4u\quad\hbox{in }\Omega$$ so-called metallic boundary condition $\nu\times u=0$ on $\partial\Omega$, $\nu$ exterior normal $\partial\Omega$.
منابع مشابه
The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملMinimizers and symmetric minimizers for problems with critical Sobolev exponent
In this paper we will be concerned with the existence and non-existence of constrained minimizers in Sobolev spaces D(R ), where the constraint involves the critical Sobolev exponent. Minimizing sequences are not, in general, relatively compact for the embedding D(R) →֒ L ∗ (R , Q) when Q is a non-negative, continuous, bounded function. However if Q has certain symmetry properties then all minim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Archive for Rational Mechanics and Analysis
سال: 2021
ISSN: ['0003-9527', '1432-0673']
DOI: https://doi.org/10.1007/s00205-021-01684-x